目的 考察影响水蒸气蒸馏法提取川芎挥发油的关键工艺参数。方法 挥发油、乳化芳香水均是挥发油提取过程的产物,挥发油性质会直接影响乳化芳香水的形成。通过分析不同冷凝温度及收集温度、提取温度、药液比、药材粉碎度等工艺参数对乳化芳香水的稳定性、得率的影响,进一步建立相应的挥发油提取过程控制模型,揭示挥发油提取分离过程中诱导其乳化分散的关键工艺及参数。结果 川芎挥发油的相对黏度、相对密度、表面张力和接触角均随着温度的升高而逐渐降低,界面张力随着温度升高而升高。稳定性动力学指数(TSI)与工艺参数的线性模型为:TSI=0.877+0.230×提取温度-0.024×粉碎粒度+0.010×药液比+0.292×冷凝温度+0.776×收集温度;TSI与挥发油理化性质的线性模型为:TSI=0.877-0.170×密度+0.098×黏度-0.301×表面张力+0.695×界面张力-0.060×接触角。挥发油得率与工艺参数的线性模型为:得率=5.065+0.258×提取温度+0.127×粉碎度+0.016×药液比+0.264×冷凝温度+0.264×收集温度+0.502×TSI;得率与挥发油理化性质的线性模型为:得率=5.065-0.196×密度-0.167×黏度-0.201×表面张力+0.153×界面张力-0.065×接触角。结论 川芎芳香水TSI、得率与提取温度及药材粉碎粒度成正比,提取温度及药材粉碎度为模型药材提取工艺的关键参数。挥发油得率与TSI呈显著正相关,TSI可以反映挥发油的得率,是可以客观评价工艺参数的具体指标。
Abstract
OBJECTIVE To investigate the key process parameters that affect the extraction of essential oil from Ligusticum chuanxiong by steam distillation. METHODS Volatile oil and emulsified aromatic water are the products of the extraction process of volatile oil. The nature of volatile oil will directly affect the formation of emulsified aromatic water. The influence of extraction temperature, the ratio of liquid to medicine, medicinal material granularity process parameters on the stability of the emulsified fragrance water and the yield of volatile oil were analyzed, furtherly the corresponding extraction process control model of volatile oil was established to reveal the key technology and parameter during the process of volatile oil extraction and separation. RESULTS The relative viscosity, relative density, surface tension and contact angle of Ligusticum chuanxiong oil decreased gradually with the increase of temperature, while the interfacial tension increased with the increase of temperature. The liner model of aromatic water TSI and process parameters was TSI=0.877+0.230 × extraction temperature -0.024 × comminution particle size + 0.010 × liquid ratio +0.292 × condensation temperature +0.776 × collection temperature. The liner model of the physicochemical properties of TSI and volatile oil was TSI=0.877-0.170×density +0.098 × viscosity -0.301 × surface tension +0.695 × interfacial tension -0.060 × contact angle. The liner model of volatile oil yield and process parameters was that yield=5.065+0.258 × extraction temperature +0.127 × particle size +0.016 × liquid ratio +0.264 × condensation temperature +0.264 × collection temperature +0.502 × TSI. The liner model with the physicochemical properties of volatile oil was the yield=5.065-0.196 × density -0.167 × viscosity -0.201 × surface tension +0.153 × interfacial tension -0.065 × contact angle. CONCLUSION TSI and yield of aromatic water of Ligusticum chuanxiong are directly proportional to the extraction temperature and comminution particle size of medicinal materials. The yield of volatile oil shows a significant positive correlation with the TSI value, which can reflect the yield of volatile oil and is a specific index that can evaluate the process parameters objectively.
关键词
水蒸气蒸馏法 /
川芎 /
挥发油 /
乳化 /
关键工艺参数
{{custom_keyword}} /
Key words
steam distillation /
Ligusticum chuanxiong /
volatile oil /
emulsification /
key process parameter
{{custom_keyword}} /
中图分类号:
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]WANG Y Q, YANG Y Z, WU Z F, et al. Traditional function and modern research progress on volatile oil in Chinese materia medica [J]. Chin Tradit Herb Drugs (中草药), 2018, 49(2):455-461.
[2]LI Y S, ZENG Z X, ZHANG M, et al. Application of primarycomponent analysis in the methods of comprehensive evaluationfor many indexes [J]. J Hebei Univ Technol (河北工业大学学报), 1999, 28(1):94-97.
[3]CAO L J, MIAO J, LIU J X, et al. Research on contents of anthraquinones in Cassiae Semen by principal component analysis [J]. China J Chin Mater Med (中国中药杂志), 2015, 40(13):2589-2593.
[4]ZHAO L J, FENG Y, XU D S, et al. Multivariate analysis of relationships between material properties and hygroscopicity of Chinese medicine raw materials.[J]. Acta Pharm Sin(药学学报), 2012, 47(4):517-521.
[5]FU S Z, WANG T T, GAO W Y, et al. Comparision of contents of anthraquinones and phenolic acids compounds in different processed products from Rheum officinale by principal component analysis [J]. China J Chin Mater Med(中国中药杂志), 2014, 39(5):833-837.
[6]JIANG H Q, NIE L, ZHOU H L, et al. Optimization for compatibility of ramulus uncariae cum uncie total alkaloids and Semen Raphani total alkaloids based on partial least-squares regression analysis[J]. Chin Tradit Herb Drugs (中草药), 2013, 44(18):2531-2536.
[7]XU Y S, PAN X Q, GONG M X, et al. Correlation between absorption ingredients in Wuzhuyu Decoction and uptake amount in everted intestinal sac[J]. Chin Tradit Herb Drugs (中草药), 2014, 45(17):2490-2498.
[8]WU Z S, SHI X Y, SUI C L, et al. Development and validation of a NIR quantification method for the determination of baicalin in intermediates of Qingkailing Injection [J]. China J Tradit Chin Med Pharm (中华中医药杂志), 2012, 27(4):1021-1024.
[9]BOULESTEIX A L, STRIMMER K. Partial least squares:a versatile tool for the analysis of high-dimensional genomic data [J]. Brief Bioinform, 2007, 8(1):32-44.
[10]KANG W L, LI J H, ZHAO X Q. Effects of interfacial tension and droplet size on emulsion stability [J]. Oil-Gas Field Surface Eng (油气田地面工程), 2005, (1):11-12.
[11]HE S B. Study on the formation mechanism of initial droplets of droplet condensation [D]. Dalian:Dalian University of Technololy, 2007.
[12]ZHANG X F, WAN N, WANG X C, et al. Correlation of parameters of technology and physicochemistry with fragrance water stability in volatileoil of Caryophylli Flos[J]. Chin Tradit Herb Drugs (中草药), 2016, 47(22):3975-3981.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目资助(81703720); 陕西省重点研发计划项目资助(2018SF-314);陕西省中药制药重点学科项目资助(303061107);陕西中医药大学2017年度科学研究计划项目资助(2017PY29);陕西省教育厅2018年度专项科学研究计划资助(18JK0208);陕西中医药大学学科创新团队项目(2019-YL11)
{{custom_fund}}